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elastic waves by a body with continuously varying parameters placed in a

homogeneous medium.
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SIGNIFICAMCK AND UPLATIOI

The passage of waves through a solid is a matter of some practical

importance because of their effect on structures and also because they can be

responsible for the transmission of noise. Vibration may occur naturally due

to such thing as earth movement and wind gusting or may be caused by

machinery. Sometimes oscillations are deliberately induced, as in ultrasonic

testing, to check the strength of bonds, to detect flaws or to locate pockets

of material different from their surroundings. Theoretical prediction of

phenomena is therefore a vital adjunct of investigation in the field.

The theory is based on computing solutions of the equations of a

mathematical model. These equations may, and usually do, have several

solutions so there is a task of identification and interpretation of their

relevancel clearly, wasted effort will be avoided if it can be indicated which

solution or solutions to seek. Previously, it has been shown that, if a loss-

free object of constant properties is embedded in another substance with

constant material properties, there is only one solution which allows energy

to radiate away from the body after it has been struck by an incoming wave.

This report extends the theory to obstacles whose properties change

continuously from point to point and also permits them to have losses. It

shows that there is still a single solution to be found provided that one

keeps to the mathematical criterion that the disturbance from the obstacle

spreads outwards.

The responsibility for the wording and views expressed in this descriptive
sunmary lies with NRC, and not with the author of this report.
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A UNIQUENESS THEOREN IN ELASTODYTANICS

D. S. Jones

1. Introduction

In his book on elastodynamics Hudson (1980) points out the need for a

uniqueness theorem for materials which are not homogeneous. This paper makes

a contribution to filling that gap by providing a uniqueness theorem for

inhomogeneous, but isotropic, bodies. Inhomogeneities of two types will be

examined. Those in which the material parameters are constant except across

certain surfaces of discontinuities and those in which the parameters vary

from point to point but have some continuity and differentiability available.

The piecewise homogeneous case has already been discussed by Kupradze (1963)

but it is included here partly for completeness and partly because it involves

only a short argument from formulae which are needed for the continuous

inhomogeneity. In our investigation, the material parameters are permitted to

be complex, with some limitations, so that lossy substances are not excluded

from the theory. Only bonded bodies will be the subject of study.

Section 2 sets out the basic linear equations which are of concern and

formulates some of the constraints on the field. Standard formulae for the

representation of the displacement in a homogeneous body, whether finite or

infinite, are given in Section 3.

As it turns out a proof of uniqueness for the general problem revolves

about a proof for the interior of a finite body. This interior question is

examined for the piecewise homogeneous substance in Section 4 and for the

continuous inhomogeneity in Section 5. While the analysis of Section 4 is a

straightforward application of the representation for the displacement that of

Sponsored by the United States Army under Contract No. DAG29-80-C-0041.

}] - . _l _ , I : . . .. . .. i i i . .. I I I . . . .



Section 5 is much more complicated and probably the most difficult part of the

whole exercise. Nevertheless, the theory here has no restrictions (other than

continuity and differentiability) on the complex values of the material

parameters though this freedom has to be abandoned in the full problem

later. By means of the interior theorems the relevant theorems for the

infinite medium are derived in Section 6 and their application to the

uniqueness problem in scattering indicated in Section 7.

Two appendices contain results whose derivation would have interrupted

the flow of argument in the main text. Appendix A gives, for easy reference,

certain properties of spherical harmonics needed in Section 5. Appendix B

covers the basic uniqueness theory and expansion properties in an infinite

homogeneous medium. In particular, it verifies that one of the two customary

radiation conditions can be disposed of without affecting uniqueness.

Equations from the Appendices when referred to in the main text are

distinguished by the appropriate letter.

2. The governing eguations

The first problem to be considered is that of harmonic elastic waves in

an isotropic body of finite size. The body occupies the volume T_ and its

surface will be denoted by S. The volume outside S will be identified by

T+. In T_ the displacement at the point x is u(x) with Cartesian

components uj and the stress tensor is T jk. The material occupying T_ is

of density p and its elastic properties are specified by the La" parameters

, 9-. It will be assumed that there are no body forces. Then the equations

to be satisfied in T_ are, when the time dependence is a ,

jk ax, 8k ' ax-2-

-2-
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where jk is the standard Kronecker symbol and the usual summation

convention has been employed. The Cartesian for of the governing equations

is given with (x1 1x2 ,x3 ) the coordinates of the point x.

In most applications p is positive and, in lossfree media, A > 0 and

;P 0. When dissipation is present I and u can have imaginary parts. For

much of the subsequent analysis they can be taken as arbitrary complex

quantities but it will always be assumed that, on T_ and S#

Jil > 1/K, ll+2pl > 1/K , (3)

where K is a positive finite constant.

The solutions of (1) and (2) to be found depend on the boundary

conditions on S and whether there is any transfer of energy between T_

and T+. When wave motion in T+ has to be taken into account the media will

be assumed to be bonded across the interface 8 so that the traction and

displacement are continuous there.

3. The homogeneous medium

For subsequent purposes it will be convenient to have a representation of

the displacement when the medium is homogeneous with X, U, p having the

constant values X0, P0,# . respectively. It will be supposed that v ' 0

in concordance with (3). Let

2 0-joasr l-eibly -mlx-
- -OX) .______- _ _I _-e _ _ •" aI (4)4 W1Oo2 3x3-X l I 4ila l 8jk

where a - (pO/(A0+2v 0 ) /20 b - 1/2 the slownesses of P- and 8-

waves respectively. For complex parameters the square roots are defined by

-3-
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their principal values. In view of (3) both a and b are finite. The

ranges of the parameters will be restricted so that
S

Im(.m) 4 0, Im(ab) 4 0 (5)

but the real and imaginary parts of wa are not permitted to vanish

simultaneously nor are those of ob. If Im(ma) - 0 then wa must be

positive and similarly for Wb.

The tensor gjk specified by (4) satisfies

2

01 ax1V x + UO + P0 wq = 8 ik'lX'Z) (6)

By means of the divergence theorem and (1), (2), (6)* Betti's representation

(see, for example, Kupradze (1963)) can be obtained, namely

Ck(X) n f o n  y g 'kX ) + uo(niujnui) n Uk(X.' )

(7)

- Tji9jk(x,x)ni}dS

for x in T.. In (7) n is the unit normal to B out of T_ into T+.

If x is in T+ the left-hand side of (7) is replaced by zero.

Suppose now that T+ is a homogeneous isotropic medium. A representa-

tion similar to (7) can be derived provided that appropriate radiation

characteristics at infinity are prescribed. There are two possibilities that

will be considered.

In the first case suppose that Im(ma) < 0 and Im(wb) < 0. It is then

evident from (4) that gjk decays exponentially at infinity. Assume that the

displacement and stress also are exponentially attenuated at infinity. Then

apply (7), which is valid for the interior of any closed surface, to the

-4-
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volume between a large spherical surface and the exterior side of S. Because

of the exponential falling off of gjk # uf Tjk the contribution of the

spherical surface tends to zero as the radius of the sphere approaches

infinity. Therefore, if the definition of n is retained unaltered, uk(E)

is the negative of the surface integral in (7) when x is in T+. Of course,

it must be remembered that in this surface integral u and Tjk have the

values on S which are approached from T+ whereas when the integral

represents uk  in T_ the values of u and T on the interior side ofjk

S must be employed.

The second case is that in which Im(wa) - 0 and Im(ib) - 0. now it is

assumed that, as R - Ixl + a, Ru is bounded and that

R( s' S+ i~bV0 (u~ ~u axIX,+ im(.+2%h)x ju Nxm 0(8

where x is a unit vector in the direction of x. Actually, it is shown in

Appendix B that the requirement for Ru to be bounded is superfluous but it

is easier to justify some of the subsequent statements if this condition is

retained. Bearing in mind that, as lxI m with X fixed,

jk~x - 41p R  l x X
i0R

(9)

_iL. -imb(R-xx
4wPM0 R

we see that the contribution from the sphere at infinity again vanishes. The

conclusion is that u. can be represented in T+ by the negative of the

surface integral in (7).

i 4II I
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It is conceivable that one of Iu(oa) and Im(Wb) could be zero while

the other was negative but this does not seem to be of sufficient practical

significance to justify separate consideration. Therefore, only the two cases

already mentioned will be discussed subsequently.

4. The interior problem for piecewise homogeneity

This section and its successor are devoted to examining what can be said

about the field in T- when the displacement and traction vanish on S.

Obviously, if the medium is homogeneous (7) may be invoked with the conclusion

that u - 0 in T-. It follows from (1) that the stress also disappears.

Actually (7) can be extended to piecewise homogeneous bodies in suitable

circumstances. Let S 1 be a closed surface, entirely inside S, where the

material properties change discontinuously from one set of constant values to

another set. Apply (7) to the closed surface consisting of 8 + S1. The

integral over S is removed by the boundary conditions. As for the integral

over S1 it represents a field everywhere outside S, and it is obviously

analytic. But it is identically zero outside S and therefore analytic

continuation ensures that it is identically zero outside S1. Therefore the

traction and the displacement on the exterior of S, are zero. If the media

are bonded across S1 the traction and displacement are continuous and

therefore zero on the inner side of S1 . If the interior of S1  is

homogeneous the preceding paragraph tells us that the field is zero. If there

is another closed surface S2 inside S1 where the material properties

change but in a bonded manner we repeat the argument starting from the closed

surface 81 + 82. obviously the procedure may be continued for any finite

number of closed interfaces each totally enclosed by its predecessor. Such an

-L



arrangement may be distinguished by the adjective nested. There is, of

course, no reason why S1 should not consist of a finite number of distinct

closed parts.

It must be emphasized that the above process may break down if, at any of

the interfaces, the boundary conditions are other than the continuity of

traction and displacement. In order to stress this point the word bonde is

included in the following theorem which has now been demonstrated.

Theorem 1. If the traction and displacement vanish on the bounded

surface S of a bonded nested piecewise homogeneous body T the

displacement and stress tensor are identically zero in T.

5. The interior problem for continuously inhomogeneous bodies

While Theorem I does cover certain inhomogeneous bodies the departure

from homogeneity consists essentially of discontinuous changes across

surfaces. In this section the material parameters will be assumed to vary

from point to point but discontinuities will not be permitted. In fact, it

will be assumed that p is continuous, A is continuously differentiable and

that p is twice continuously differentiable.

Throughout solutions of (1) and (2) in T_ will be sought in which u

and uj /Bxk are continuous. Furthermore, the boundary conditions

S 01 njTjk = 0 (10)

will be imposed on S.

If T_ were a piecowise homogeneous sodium the boundary conditions (10)

would be sufficient to ensure that the field vanished identically but the

argument of the preceding section cannot be carried over to the case when the

-7-



material parameters are continuously variable because the representation (7)

is no longer available. Instead one is forced to proceed in a more indirect

fashion.

In order to fix ideas the value zero is assigned to A, p, p in T+.

(1) (1
Lemma 1. Let the field u T be defined by

(1) (1) -x

u u , "kx T
-' jk -

Tjk (xT

(1) - ~,( )

Then, under the assumed conditions, Ua 3u 1 ) /xk, ( ]/xk arei /ak Tjk , -ak

continuous everywhere.

Proof. Until the stated continuity has been established values on S when

x approaches there from T_ will be denoted by ( )_ and those for x

starting in T will be signified by C ).

Continuity in T+ is immediate because all quantities vanish and,

moreover,

I£11)I o0, (3u~)/ x)+ o 1 - 0- , (acl l/axk)+ - 0 • 11)

In T_, u (I ) is continuous by assumption and (10) gives (u (1) -0

Thus the continuity of u(1 ) has been verified. It is also clear from the

hypotheses, (1) and (2) that au(1) (1) and a ()axk are continuous~~~~~U s  ,3k Tjk ad Tjk/ reonius

in T. Accordingly, the lemma will be confirmed once the requisite

continuity across S has been demonstrated.

Choose any closed circuit C on S. Then, by Stokes's theorem,

fc(u d- fs, n-% (grad (12)

where S' is the portion of S within C. By assumption (10), the left-hand

side of (12) is zero. Since C is arbitrary, the conclusion is that

n A (grad uI) is zero on S. A vector product with n then enforces



ax an (13)

on S.

Also (10) says that n (T )- 0 on S and so, from (1),

u()  u(1) (1~) =

) + -" 0
k a x-- J-( 3 Xj -

The insertion of (13) leads to

Ankn ( --- )_ + jmjn L--_ + ak- (14)

on S. Multiply (14) by nk and then, by virtue of (3),

it (au M)/n)_ - 0 . (15)

On the other hand, if Aijk is the alternate tensor, multiplication of (14)

by Apqknq gives

A k q( k( /an) - 0 (16)

on invoking (3) and noting that Apqknqnk - 0. Equations (15) and (16) may be

expressed as n*u(1)/3n - 0, nA au(1 )/an - 0 and therefore (u( 1 )/3n)_ - 0

on S. One infers from (13) that (3u(1)/3x ) 0 on S. The required
contnuit of (I / x

continuity of 3ui /ax now follows from (11).
(1)

In view of (1) and (11) the continuity of Tjk may be inferred whereas

that of aT }/3Xk is a consequence of (2), (11) and what has already been

established about u(I)• The lemma is proved.

Theorem 2. In T let u, j be continuous and satisfy (1). (2)

under the given assumptions. If u - 0 and n T 0 on S then u R 0,~ __ __ __ __ jjk -- -

Tjk -0 in T.

-9-
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Proof. To permit analysis in the whole of space u and T are first
jk(1) (1)

extended to 1 and T() as in Lemma 1. However, for simplicity of
- jk

writing the affix (1) will be dropped, on the understanding that its presence

is allowed for.

Pick as origin any point which can serve as the centre of some sphere

within which the field vanishes identically. Clearly, there are many possible

choices since any point of T+ has the desired prnperty.

Let R, 8, * be spherical polar coordinates based on this origin. There

are 2n + 1 independent surface harmonics of order n. Construct an

orthonormal set from them and let a typical member of that set be S (8,6)
nj

with j - -n,-n+1,...,n. Then

V 2{R nS nj(,)} - 0 , (17)

V 2{R- n (e,.)} - 0 (R > 0) , (IS)

fQ SnjSr d2 6jk (19)

where 0 is the surface of the unit sphere.

Next, define

(0,R) -()B . . (20)

On account of (17) and (18)

V2 *j (0,R) - 0 (21)

for R > 0. In addition *j (a,a) - 0.

The function *JP has a singularity at the origin but, since it will

always be multiplied by a field which is identically zero in a neighbourhood

of the origin, the singularity can be effectively ignored in the subsequent

analysis.

-10-
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To abbreviate the notation the value of u at the point R, w, vill

be written as u(R). Let T(O) be the interior of the sphere of radius a

and centre the origin. Then, by the divergence theorem,

fTO Tik*j R -f2nk i(0)*j( aC) 02d

- SRo, n ik a *n3(,")d

It should be remarked that T(O) may encompass part or the whole of T..

Therefore, possible discontinuities in the field across S have to be borne

in mind in applying the divergence theorem to integrals over T( a). However,

the continuity of Tjk proved in Lema 1 guarantees the validity of the above

formula.

Since nj (0,C) is zero

tnj(OR)d L-.L *Aj3 (0,R)

(22)
au, a% a

+ , + --E) -j (*n R)"

from (1). Now, by the divergence theorem,

fT(a) "; I ax. ~- f i!a2d, - T(G) Ui''3n dx (23)
ON 3x - ia xkaxk .

on account of (21) and Lema 1. Also

,7



r _ ! I ni - Tn )d d - d. 24

dx
" T((F) 3! ( Uk ax, -

after two applications of the divergence theorem and Lemma 1. Since 4

vanishes vhen R - a advantage may be taken of (13) to assert that

Lnk R J k 9RI a n+2 * (5

Inserting (25) in (24) shows that there is no contribution from 2~.

Hence, combining (22) - (25), we obtain

Stikau a4
Pu (0)B d~l+ + axfa n ak nj X r m i~ (k)

(26)

' ui x + u 3x, 4'

vherein 3ik/axk may be replaced by -OPUi by virtue of (2).

A further formula is helpful. It originates from

fT -~i -- i - fa n, ikBrJ ~ d - JT(a)Frk ax dx (27)
T(0) axi 3xk 3xk iaxk

after drawing on Leoma 1 again. Now, from (21) and the symetry of the double

partial derivative,

-12-



a2 au12

T(0) Tik ax da - fT()1 axi X-

fa 2nk, ax dd - fq 2ui pd
'T(G) ax axiaxkx

- fa 2(L -n fl)uo, 2dQ
axixk 3Xk axk
xi~ n axk  )aix d

Also

n~ Ti± !! -d fain Aaum u + au) 3*' dQ (29)
mX (x I aki axk

and in here we can put

an a1c *x n
"i ax±axk n k Tax

through (25). Hence (27) - (29) supply

fa*(au a _d

iik u±) _a n3  2

t, (2) Co ak in a na,

fT(0)2 ixi ui axk)xkI d

Since a2 *nj/axk 3xk 0 the integrand of the second surface integral can be

expressed as

But, if in (12) C is allowed to contract down to a point in such a way

that S' becomes all of S, we see that the integral of n A grad ! over a

-13-
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closed surface is zero. Hence the second integral over Q disappears and

2n+1 uan ix x ( u i )) S nj dQ

(30)

" (o)(2U -2 i 3k aL

Note that in obtaining (26) and (30) no derivative or combinations of

derivatives of ui other than those occurring in Lemma 1 have been called

for.

A rewriting of (26) and (30) is desirable. Put

Rnj (0) - f, i(0)Sdnj d ,

Snj(a) = fa2PWO2(0)Snjd ,

r (0) " AXLk (a)S n d,

nj Oxk Uk
8 nj (a) M u.l grad (U)S i )S

k

n((F) - fa -L (ui grad p)s d2

In addition (A.1) and (A.2) of Appendix A may be quoted to give when n > 0

n+1 nn+2 R -1
grad #nj . jSn4 1 "./R - R I j S1le

where the summation convention does not apply to a repeated Greek suffix.

Then, if n > 0, (26) furnishes

-14-
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2n+1 o. I R 1 r R2)1sn+R)

RR 4-1 n-1

- F, -n+ I a rn-'(R) + "'(R) (31)

41 1n+1 n+ n- 0(-1~~()
I (b ) t (R) + n- _ (iBO)kn-l,0 k(R )

in XV-n ~I k-n+l,a k~ 4 2n+1 13-+

while (30) provides

2n+11
2n+ (r () +  2s ())" I0 b -( S ,,(R) - 2v (R))

O j nR aue r-n-i- ~ -+'

Rn+1 n-1 
(32)

2n 'L ~jOfnip(R) - 2v (R)))dRa 2n+1 n+[ I1B' 1 ft) 2,-1 o( ) ]

for j - -n, -n+l...,n. If n - 0 (which entails j - 0) the terms

involving ! Oj are missing because

12

grad 0 0 - I b Sj'IR

With the convention that the terms in a are to be removed when n in

placed equal to zero, (31) and (32) can be retained for all n # 0.

The notation will be further simplified by putting (31) and (32) in the

form

4n An (R) R n+1

2n+1 0O n 2n+ ntj(R)R(3
on Cn (R)  Rn + l

r nj(a) + 2s nj (a) I fo- (,0 n + Rn+ Dnfj (R)})dR (34)

where
n+1

A (R) - + I b: (?4 (r + s (b (35)-nj Nnj au-n-1 ' en+ie) (aj )ktn+,ak

n-1
n (R) R l : (a (rn-1 ,0 + a- )-(a - t ( 36),- S1 ft (j,0 n-1, 0 -1 k-n-i,Ok

.1-15-
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C j(R) - b,-,- : ('"= 2'Y " (37)

n-1C~ ~ (R) ~ 2v ),(37)

D CR) - -i -f t,) • (38)

The body in of finite size and therefore there must exist positive finite

01,02(2 >0 ) such that the field under consideration is identically zero

inside the sphere of radius 01 and outside the sphere of radius 02' the

centres of both spheres being at the origin. Obviously, 01 can be reduced

and 02 increased, if convenient, so long as both remain finite and positive.

Since ani(o) - 0 for a > 02 the right-hand side of (33) must vanish

for all such a. However, the integrand also disappears for R > 02 and

accordingly

02 hn a2
f0 (R )/ e R - o, f02 R '4 1 . (R)d - 0 . (39)

Similarly

J2(C (R)/RndR - 0, 2 R n+D R)dR-0 (40)
0 -j 0, nj(R -o.(0

Let p be a positive integer. Suppose firstly that p ) n. Then, from

(33), 
2 n A R) R B R)

IMj (F) 1 2 {Ifo ^%n + I ah12]

(2n+i) R 0

2 o2n R2p-2n- 1 -2p

20 a(fR 2 dR R 2 IA j(R)I jdR
(2n+I)

2

2n+2p+ 3 1 -2p
+fgR dR f'R 2  -4n-2 I j()2dRJ+ o R dR f0, I ,nj (R')1

by Scharz's inequality. Hence

-16-



2p 2p
121()2(42 2 (2f R 2 PI () 2 d

W4)
I -2
2p 12dR -2

+ JQR 2  Inj (R)I d(2n+1)

for p ;0 n. When 1 4 p < n we dray benefit from (39) and write

3 3
iaA ni(R) d1 If02Ai (R) dR 3Cfa2R2+i-2n dRf02R2p-JA(R*i d

for 0 4a 2. Since

3 3
2 p+ Z -2n 2p+ - -2n

f 2R dR 4JR 4

ye deduce that

22 2p+ 1 fo R2p
(2n+1) 2 1 1 (O)I s 0 2R 4 

1 i(R) 
2 dR

1 1 (42)
o 2p 2

+ 2o fo'R IB (R)l dR

for 1l4p <n and a0(0.

Fromn (41) and (42) follows

2 2i ap 2 2 -2
L ~I~~o)I ~ 4o 'R 2  IA (R)I dR(2n+1)

n 10 j -n 1kiOi n-0 J--In40 f n

40 n 2p+ 32

+ I 80s f 0 2p JA (R)I dR(2n+1)- (43)
n-p+1 J--n -n

n 2p+1 2--2

I0 jn 20 fg"R IS n (R) I dR(2n+1)

for 0 4

-1 7-



Toa estimate the right-hand side of (43) observe from (35) that

2 2 .2 . n4* 2
JA(R)I 4 3a I 1 + 31 1 b (r + a )

2 'nj -si n+I, a n+1,rA

31n+1 12

-n1-ib tnl~k

NOW

n n+i 2
I I j( ~~ ~~

(44)

-(i)(2n+i) 2 n ir +  %i,2

2n43 am-n-i

from (A.8). Further

n+l 2 3 n+i 2
1 1 (b ) 9 b (

a--n-II gmkrI - -n-I ,M

and so

n tl2 9(n+l)(2n+l 3 n) 2
1 1 (b j) ktnaic 2n+3 Z I ln+i~s

j--n a--n-I "n 3i s-i a-n-I

from (44). Hence

JI I&nl(R)I 2 4 30~ 2 1 ljjj2 + 3(2n+) 2 I .1 2

2-- 3-- nl 2

+ 27(23+1) I I it I
0-1 an-np-i

Another observation is that

I Ilnj(R )12  fnlf2 I(R) 1
2 dQ

nwO ju-n



on account of the completeness of the spherical harmonics. Since p is

bounded it follows that

n nli :l 12 j fl l ) 2d a

similarly

- n+i1-o A+1 Ir+ ' (" + . (  2  ;  n I-  ) 12  +  l~jau/ax. 12 ) da
I I Ir n+4a(R) + s+ (R) 3 fa(lu(R)I ~ 1 /2 5  d

n-0 a--n!-i n

- 3 n+1

10I I I D ,1.1.f I • l .fll(R)12
n -C s,,I --n-i,,

where B is now being used generically for a constant independent of R.

it may be shown in a similar fashion that

n n nt-1
in ()l 2 4 3a 2 2nJ1t2 + 3(2n+1) 2 I_ + 1 2

ni 3n ,,-n+l -, U1

3 n-127(2n+i) 2  3 n- i 2

-1 0--n+ 1 O

the last two terms being absent when n - 0. With this convention

n- 1 2 2 2/ax 12)d

n-C 0--n1 '1n-1 S n-1,B'O Bf(IA) Is. 3 m a d

r 3 n-I

I I It I 2 4 B ( lBu(R) 12 0 .
n-C s-, 0--n+1 ^M-1,06

Let us now suppose that

1

{Igll(R) 12 + laiua 12)dO CR 2(45)

This statement is obviously valid when p - 1 from the assumed properties of

the field. Indeed, the left-hand side is zero when R < a and when

-19-
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R > 0 2 Then (43) and the succeeding inequalities reveal that

r I ( IMA - 2 p 23 O
I I lIp n(0)I24B (1+ 2

J~I~I n-0 J-n n 0p2)

for o 4 02' 0invoking (3) we infer that

3

fQl?(0)I j2d C RK2C 0 +i 1 2 (46)

A similar analysis applied to (34) furnishes

f.I - ~o + 2 -L (Mk 2 dQ -CB p 2 (47)

and again (3), together with (46), gives

au 2 4 K2 2 P i(1 2 (48)

Inequalities (46) and (48) may be combined as

3
fjjju(~j2 + 13u /ax 12 ( - BK 2 C 2Fpj1 2 (9

for R 4a.2

Then, when (45) holds for some p, (49) shows that it holds for p + 1

provided that C~. BK2C (1+0 2). Since it is certainly true for P 1

f{(R1 2 + lau./ax 12 )dU 4 (BK2 (l+ 2) -'C R 2fal R as (2

for R 4 a 2 and p 1,2,... e An immediate consequence of letting p .

1 2.
2 2 2in that u I0 for R < 1/3 K(1+02  It is transparent that I 0 in

2 a jk

the same region.
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l2
Let RO " 1/K(1+O12 ). Choose another origin 1, which lies within the

sphere of radius. . The body is entirely inside the original sphere of

radius a2 and therefore contained in a sphere of radius 02 + R0 about

x . However, the field is identically zero in a neighbourhood of ! and so

the foregoing theory may be applied to show that it is identically zero inside

a sphere of radius
121

R,- (1 + (O2+R0)2} 2/a2K

In view of the arbitrary selection of we deduce that the field is

identically zero throughout a sphere of radius R0 + R, centered on the

original origin. Clearly, the process can be continued and the field will be

identically zero inside a sphere of radius R + R2 +...+ Rn - Sn where

1 1

Rn 1 + (S + R0)) /3 (50)

If Sn approached a finite limit as n + -, it would be necessary for

R + 0 which is inconsistent with (50). Therefore, the body will be totallyn

enclosed by the sphere of radius 5n after a finite number of steps. Thus

the field is identically zero throughout the body and the theorem is proved.

6. The exterior problem

The next matter to be examined Is what happens when the regions T+

and T. are bonded across 8 and, instead of specifying the displacement and

traction on S, the behaviour at infinity is prescribed. It will be supposed

that the material parameters X, IA, p have in T+ the constant values ,

P', p0 respectively. The restrictions that will be imposed are covered by

ConditionlA. In addition to satisfying (3) the material parameters must

comply. in both T_ and T+, with either

(a) im(j) ) 0, Im(+2i) 0 0, Im(w2p) < 0

-21-



or (b) la i) 0, Im(.+2u) > 0, wp > 0

or (c) P > O, A + 2p > 0, w2p > 0

There is no difficulty in checking that any one of the alternatives is

sufficient to ensure the validity of the constraints placed on wm and Ob

in 13. Furthermore, under any of the three conditions,

m(ibu0 ) > 0, lm~ia(iA 0 + 2p0 )) > 0 . (51)

We shall now prove the following theorem.

Theorem 3. Let P be continuous, A be continuously differentiable and

twice continuously differentiable in T_ + S and have the constant values

P0, A0, 0 T+. Let u, k s atisfy (1) and (2) when x# S and be such

that ui and 3 u/ 3 xk are continuous in both T. + S and T+ + S. Suppose

further that
(u)+ - (u)-, (n Tk - (nTjk (S2)

on S. Then, if u, Tk satisfy the radiation conditions (8) at infinity

u 0 0, T - 0 subiect to Conditions A.

Proof. Let R be so large that a sphere of radius R centered on the origin

totally surrounds S. Then

fa njTjk CR) u.kR)R dQ = n (TjkuK)+ dS

au 2 au auk au ak
Ux +c. + -r po to u )d

where T is the volume between S and the surface of the sphere of radius

R. The star signifies a complex conjugate. By virtue of (52), nj(TjkUk)+

may be replaced in the integral over S by n (T jkuk) and then the

divergence theorem applied to T_. Hence
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f2 njTk(R) (R)R 2W

, *

au fT (A 2~ + 1 i4(2 1 + Lu) + .2)-pwu1U2}dx
fT() lx 2 BN O 3

The imposition of the radiation conditions (8) now enables one to say that, am

* I R ' '

fT(R) + - "1  u2 " " i i-

+ lj- + i-'t 1- pa. juj]dx . _f(i.a(IuI 2 ).(53)

2 2

+ iua(A,+2pi,)lxeuI R d2 + o(1)

Under conditions A the imaginary part of the left-hand aide of (53)

cannot be negative whereas, on account of (51), the imaginary part of the

right-hand side cannot be positive. This is possible only if

2 u, 2 ., 31 ,2 a312 + 3+ L 12,,....n" sl(>,+2,,)_,-- + u-, + I 2 + + + )

R-0-M 3X ax 3% x2 I 3x3 (54)2 2

-w 1J12]d3" - 0

2 A 2~ 2 2li fji(bpo(Ill I. 11 ) a)+ to+2poil)xul }R dQ - 0 • (55)

It is evident at once from (54) that, for conditions A(a), u - 0. It

follows that 1,k a 0 and the theorem is proved. Similarly, under A(b), (54)

implies that Tjk = 0 and then (2) enforces u - 0. Again the theorem has

been demonstrated.

For conditions A(c), (54) is no longer helpful and (55) must be turned

to. In Appendix 8 it is shown that the radiation conditions entail (equation

(-.11))

l -231-
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-iIMRwbR

u -iWa f x-iwbx +01

subject to

e.x- 0 .(56)

since x and x . are perpendicular the implication of (56) is that

lul2 = (Walfo1) 2 + (Wbllol)2}/R2 + 3(1/R3

Accordingly,

f.(io 0w
2b3 ig.12 + (XO+2uo )w2a3 foi 2 )dQ - 0

stems from (55).

By hypothesis the coefficient of I%12 is non-zero and so we are

obliged to have 0. Similarly, fo 0 0. But, in Appendix 8, it has been

demonstrated that fo = 0 and s B 0 make u 0 in T+. Hence

- 0 in T+. It follows that (u)+ - 0 and (n T )+ - 0 on S. From
jk +* j jk+

(52), (u)_ - O and (nj )" - 0 and now Theorem 2 enforces u S O and

1 0 in T_. The proof of the theorem is finished.
jk

Evidently, the same method of proof but drawing on Theorem I can be

applied to the piecewise homogeneous body and so we can state

Theorem 4. Let T_ be a bonded nested piecewise homogeneous body. Let u,

T' satisfy (1) and (2) except on any interface and have, tinuity

properties analogous to those of Theorem 3. If u, Tjk comply with the

bonded boundary condition and satisfy the radiatinn conditions at infinity

then, under conditions A, u 0 and T k 0.

The theorems have been proved with the boundedness of RJuJ as part of

the radiation conditions. However, it is demonstrated at the end of Appendix

B that this requirement can be dropped without modifying the assertion that

f = 0, 0 =O i implies that u B 0 in T+. Therefore, the validity of

Theorems 3 and 4 is unaffected by this change to the radiation conditions. We

state this as a corollary.
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Corollary. Theorems 3 and 4 remain true when (8) is the sole radiation

condition.

7. Uniqueness for scattering

An easy consequence of the theorems of the preceding section is that the

solution to the scattering problem is unique. Let an incident displacement

u be generated by some means. It is presumed that any scattered field

produced is outgoing at infinity and so satisfies the radiation conditions.

If there were two possible scattered fields, taking the difference between the
i

total fields would eliminate u and have a field satisfying our theorems.

That field must therefore be identically zero and uniqueness of the scattered

wave has been established.

Theorem 5. if a given incident wave produces a scattered wave satisfying the

radiation condition then, under the conditions of either Theorem 3 or 4, the

scattered wave is unique.

It is, of course, sufficient for uniqueness to impose the radiation

condition in the form (8) alone but it may be more convenient, in practice, to

keep the boundedness of R3 available even though it is jettisonable.

-25-
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APPENDIX A

This appendix is devoted to deriving some properties of spherical

harmonics which are needed in the main text. The sumation convention is not

employed in this appendix.

Since RSn (0,+) is a solution of Laplace's equation so is

3(RnSn )/3N. It will, however, be of one degree lower and hence is

expressible in terms of solid harmonics of order n - 1. Hence there are

constant vectors a such that
n-1

grad(R nSn) - Rn-  I a pjSn-lep (j m -n,-n+,...,n) (A.1)jp--n+1

A similar argument reveals that there are constant vectors b such that

n i~

grad(Sn 1 rk/R0) b b kS nq/Rn  (k - -n+l,...,n-1) . (A.2)

It is understood that n ; 1 in (A.1) since 800 is constant and

grad S - 0.

From (A.1

n-i

1-2n n-1
div{R grad (RS n))- I aj grad(Sn_ ,p/Rn)

n- I p n M-pn-i

I Iaj" I b S /RpP--n+o1 c--n Pn

on account of (A.2). Since V 2(RnS n) 0 we deduce that

n-1 n
(1-2n)nS I a[ " X b S

nj p--n+1 q--n nq

The orthonormal property of the Snj now leads to the conclusion

n-1
Spj• b - (1-2n)n6 (q,j - -n,...,n) . (A.3)
pm-nilqj

-26-
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Similarly, by taking the divergence of (A.2) mltiplied by R2 n l we

infer that

I. ,qk.' p.(i+2n)n6kP Ck,p - -n+,...,n-l) . (1.4)
q,-n

Next, forn the scalar produce of (A.1) and itself with j replaced by

q. Then

n-1
a " grad(RS )" grad(RB nq)

r-n s1 - rin " +1 erq n-1,r

whence H
Rn_ 2 n-1I

I a a fa gread(nS.,) "grodCenq) d Q

from (19), or

n-1 as as as as
I a *a + -, 2 -n re + ,inO n 3 cl$,In odqd*

The double integral can be converted, by integration by parts, to

8 28

fwf2"S { I L_(.n a M) 1----- ).t, 8dod#

0 0 n:j sin 0 aa sine 63

when the boundedness and periodicity of the spherical harmonic are borne in

mind. But, from (17),

asa,' ) (s i n 0 n- )---n(n+l) n:j + sin 0 ;e a s + sn O q2 3

Hence

n-1
a i ap fl(l+2fl)61q (j,q--n.,) (.5

It may be shown in a similar way from (A.2) that

n
b eb - n(2n1)8k (pok- (A.)-) (,.6)

A further result of some interest can be derived.
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n-I n
I I ((2n-1)a + (2n+1)bjp 2n-1)Pj + (2n+1)b.)

p--n+1 :J--n "

n

- I (2n-1)((2n-1)n(1+2n) + (2n+l)n(I-2n))
ji-n

n-1 n

+ (2n+1) I I bjp • ((2n-1)a,, + (2n+l)p)

p,-n+1 J--n

by (A.5) and (A,3), The first sun on the right clearly vanishes and so does

the second when (A.4) and (A.6) are invoked. Therefore

(1-2n) ,, - (1+2n)b (p - -n+I,,...n-1i j - -n,...,n) . (A.7)

If (A.7) is incorporated in (A.5) and (A.6) we obtain

n-1
I- +2n q (i,q -- n,...,n) p (A.8)

ny- In p - 1+2n 2 q

n2

I -% q 2n-1 ap (~ A9a " -q n1) 8 (p,k - -n+I,...,n-1) . (1.9)
qn-n
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APPENDIX B

In this appendix some properties of the field in T+ will be obtained

when T+ is a homogeneous medium (with X 0 ' p0  all positive and finite)

and the radiation conditions are imposed on the field. Then, it has already

been explained in 13 that

k(x) s- j x,Zln- )0nmum - g (x,' )

" 11o(niuj+njui) 3y1 9jkl~X
1dY 1

for x in T+. Using the explicit formula for gjk in (4) we obtain

2 2
-grad # + grad div + 2b (8.1)

where

W - - I.- fS(ni.ij-onmuuA- 110 (niuj+njui) . }-i""lrXI

p () - i 8(il X~ ~ .-I(nu+nu) --.L e't bt*x' dS
j x - W 0 402= ~ii'oU ayi  a i Ir%- sy

So long as x keeps away from a

V2# + 0&2 %- 0 , (.2)

V2 + 02b 2 -o . (B.3)

On account of (3.3), (3.1) can be rewritten as

u grad * + curl curl . (B.4)

Now, if IxI > IXI, IfXl " s5 i l+im lI l can be expanded in a

uniformly and absolutely convergent series of powers of 1/Il and any number

of derivatives can be taken without destroying this property. Also 8 is

bounded so that there is a finite R' such that 8 is cmsletely enclosed in

a sphere with centre at the origin and of radius R'. With R, 9, # the

usual spherical polar coordinates, it can now be deduced that, for R ) R',



* R
,.)- giam f(e,)/Rnl (5.s)

curl g(x) , -i0bR 1 s1 (e,)/R
n+l  (B.6)

n.o

the series and their derivatives converging uniformly and absolutely.

However, # must satisfy (3.2). Inserting (B.5) in (B.2) and equating to

zero the coefficients of the various powers of 1/R we arrive at

2
af afI-- n I nu2ia(n+l)f s e+- (sin o0 ) +

81n 2 O 2(B.7)

+ n(n+l)f - 0(n-0,1,2,...)

n

Dealing with each component of curl in the same way we have

1I an a 2 an
2iwb(n+l)gn+l + sin 8 ao (sin 6 0-) + 2

sin a a# (B.8)

+ n(n+l)qn - 0 (n - 0,1,2,...)

In addition, the divergence of curl must vanish. To meet this

requires

'o 1 " 1 o , (B.9)

-ib.+i * 1 + si (sin 8 gn-12) + sin 7(#' *3) " 0 (nno) (3.10)

where V' 2 3 are unit vectors along the directions R, 0, * increasing

respectively.

By mans of (B.4) - (B.6) the pertinent expansion of u in powers of

I/R can be written down but explicit details will be omitted here. It is

sufficient to note that, if f 0 0, (3.7) implies that fn R 0 (n0)

because we have assumed that we , 0. Thus f0 Z 0 forces * - 0 in R > R'.

Taking advantage of the analytical character of the intePgAl for * we infer

that *-0 in T+. Similarly, = 0 implies that curl 312 in T+.

Consequently, we reach the important conclusion that, if f0 3 0 and

0in T.
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One useful formula is that

-iWRR
uinia f i1 -itwbi A - +0C-j)(.1O R 1 "-1 4 R R2

PJKaRK. In the radiation conditions stated in the text and as used above

it is asked that Ru be bounded as R + -. This extra requirement is

unnecessary since (8) iu sufficient by itself to justify all the results that

have been obtained. The proof of this assertion will now be set out.

For convenience (8) will be repeated here; it is

R(x aT? wi (j ummuj +iaA2ox jum . (3.12)

Multiplication of (B.12) by x supplies

R{,x jxj + iwaO,,o+2,o)u o . (3.13)

The reality of A0 p0 and p0  permits the observation that
* 2 0 •

fnn=Tjui -n rijui)R 2 d - Js(njIijui - n rju)dS ( (3.14)
JQ nj ii i ij

In other words the integral on the left of (B.14) is independent of R

although Tij  and ui are functions of R. Nov

Ix T + iwbu (u -u x x ) + iomClo+2o o)x u x I
a0( JS0 0 jmm

A 2 2a 22 a2a *
-IX rI+Cb~~ I (ACX+2ia)) Iu I'-im,b%^ x ( -r u)

IsmJS I + m o t j mm ( +nd 0 mm Om jm2j3 s jmj

A A_

+ im(a(1+2m0 ) bhao)(mTk UST jk )x jxmk

2 2 aa 2
Ixma TjmI + (tboo) Iu~ - umxmx I

W A 0 2o0)b 7A 2+ a(1+2uo) lxi, x, + ic CA+2oi)uxl

a a 2 2 1

0 ( - bit /a(X +21a )}Ix a ri x I + W aboa C10+2a )u x I

-iwbiux C(T u
0mj a NJm u

incorporation of this in (3.14) and application of (B.12), (3.13) shows that

f 2,. 2 a a2 a2~ 2 a 2

22
+ W abuo 0 2o0 ) lu ax a )dQ
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Mist be finite as R Since Ix a 2 x tuhis i possible only

if
A 2 2 ~.A 2 f£~() 2

fOIxMT jSm(R)xj I do, flx a jal(R)l d, Iflu j (R)-u%(R)xax j I , nlu 3 txla dn

are all O(1/R 2) as R * . Therefore
fnlu(R)ll2e 4 2 fnl u xx 2 + lu;x1  l2 )d-o(' 1 , (3.15)

n j RUUj t

f4-xTjm (R)I d2 - o(1/R2) . (.16)

The order estimates (B.15) and (B.16) are enough to enable us to dispense

with the extra radiation conditions since they have been derived entirely on

the basis of (8) or (B.12). For the purpose of that further condition was to

ensure that there was no contribution from the sphere at infinity in coming to

the representation of u in (8.1). Now, the contribution of the sphere at

infinity to u( ) is given by

- {ntYtjkX,'1 - XOnmum - g x X ) - dO~nu +n u g (X ' l}R2dG

with R > I-I. On the grounds of the explicit formula (4) gjk can be

written

gjk a fjk + hjk

-i~a -icabwhere fjk covers the terms with e and hjk those vith e - l  But,

because of the uniform expansions in l/R,

-fi -iOmx f +O0(-)ax ijk 2

3h 
A 1

ax -iubxihjk + 0(-2)xl. R

as R - with IXI fixed. The integrand under consideration can now be

expressed as

-32-
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•A A A

(x Tij + iwa(0+U)xux + wa0ujf i kR

A A 2
+ (xiij 0T 0 mb(0 0)XmXj + Ib0 uj )hjkR  + O(IU)

With the benefit of (9)
A . -iwaR + /2)

fjk xjxF(B' )e /R + 0(1/R2),, -, 6ks , e:.b/

h -( -iabn + o(1/R2 )jk -Xjxk - 1jk +

Hence the integrand becomes

A A A A iniaR
(xiix T iwa( (+2uio)x Xm)xkiFRe
c; iljxj + 0 ( 0 ,In. ,a " '

A A A AA A

+ (XT Cj j;k- x'ik - iw"ON - ujXX. )) " e + O(i T.j.I + It)

The first term need not be discussed further on account of (B.13). As for the

second it may be rewritten as

A 
A A 

A

E~x Tijx +iwaO 0+2Ii)ux1 1 VA x±Tik ibUIo(uk-ujxjxk)

- imna( )I+211o)uxA.^HRe-ib

and its contribution therefore disappears by virtue of (B.12) and (B.13).

Moreover,

(fnlulRallQn)2 4 4w fnlulRll2dQ =o(I/R2 1

A( i jldn I - )2  _, O ( I/R2 )

on account of (B.15) and (B.16). Hence the value of the integral over the

large sphere is zero in the limit as R + -. Therefore the formula (8.1) has

been verified solely under the condition (8). Since the remainder of Appendix

B is founded on the representation (B.1) alone its conclusions are still

correct without the additional radiation condition. Accordingly, our

contention that (8) is a sufficient radiation condition by itself has been

vindicated.i
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